Mihailo Cubrovi¢

Physical Characteristics and
Photomorphographic Shape Analysis of
Asteroid 3 Juno

A model of 3 Juno obtained from photometry in optical spectrum is presented.
Modelling has been done using the photomorphographical method (Kaasalainen,
Lamberg, Lumme, Bowell 1992). This method makes use of lightcurves from dif-
ferent oppositions. Description of shape is based on a mathematical model of the
asteroidal surface which uses standard formalism of differential geometry. Reflection
of light is described by means of some well known scattering laws (Lumme-Bowell
law, Lommel-Seeliger law, etc.). Unlike the original method, in this paper mathemati-
cal and numerical techniques which allow some local concavities to be restored are
used. Albedo variegations are also discussed but these results are much less reliable
that the shape solution. Calculations of the shape parameters are based on inversion.
In this paper a modified version of the maximum enthropy method is used, which al-
lows good control of the stability and is more suitable for this problem than the usual
statistical inversion techniques. The starting guess for the inversion was an ellipsoidal
model obtained from a combination of classical amplitude-aspect methods. The result-
ing shape of Juno shows somewhat larger irregularities than it is usual for such large
asteroids. The shape, together with the albedo map, indicates that some collisional
structures might exist on the surface.

1. Introduction

Modelling of asteroids is an attractive field in planetary astronomy to -
day, containing some still unsolved problems. The only available informa -
tions about the physical characteristics of asteroids are the photometrical
lightcurves and some special events (e.g. occultations), which are too rare
to rely on, and non-optical observations, which are still expensive and thus
available for a small portion of the asteroid population. Calculation of sha-
pe parameters from the lightcurves is a difficult problem, unsolved in the
most general case. Namely, a purely theoretical discussion of this topic can
be found in an early work (Russell 1906). However, further development
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of Russell’s method started much later, in the early 1990s. The methods
used for modelling thus far required many a priori assumptions and limita-
tions, which had substantially lowered the quality and usefulness of such mod-
els. However, primarily due to its simplicity, such methods are still widely
used. In this paper, as the first step, a modelling procedure also using one of

22 e« PETNICKE SVESKE 53

Figure 1.

Lightcurve 15 in R
band

Slika 1.
Kriva 15 u R opsegu

Figure 2.
Lightcurve 15 in I
band

Slika 2.
Kriva 15 u I opsegu

DEO |



such methods (amplitude-aspect method), although combined with a more
recent and more general technique (the spherical harmonics method, pro-
posed in Lumme, Karttunen, Bowell 1989) was carried out (hereafter this
procedure will be called “AAS method”). The pole solution should be as
independent from the model as possible, because, obviously, the actual
shape can be different from the calculated one (this is especially charac-
teristic for ellipsoidal models). The most important feature of the spherical
harmonics method is that it is not model dependent.

The first method which has allowed modelling of arbitrary shapes
using the Russell’s formalism is the photomorphographical method, given
in Kaasalainen, Lamberg, Lumme, Bowell 1992. This method allows the
shapes of asteroids to be modelled in great detail, the only limiting factor
being, in theory (and, according to this paper, also in practice), the number
and quality of the lightcurves used.

The lightcurve from July 2000 (published for the first time) is presented
in the second section; great effort has been made to make any further analysis
or use for future projects as easy as possible. The third section gives some
necessary details about the old lightcurves used in this paper. The next four
sections describe the methodology: in the fourth section the method for pre-
liminary period determination is given, in the fifth section the qualitative ana-
lysis of lightcurves and analysis of the colour index curve, the sixth section
describes the AAS method and in the seventh section the necessary formalism
of the photomorphographic method is presented. The eighth section contains the
results and some conclusions about Juno and its characteristics. In the ninth sec-
tion a brief discussion of the methods used is given.

2. The New Lightcurve (July 26th-28th 2000)

The observations were done in Petnica Science Center during two con-
secutive nights, 26/27 and 27/28. The instruments used were the refractor tele-
scope MEADE 178/1600 and the CCD Santa Barbara Instrument Group
ST-7. Exposition lengths were 7s-10s. The observations were done in R
band (660 nm) and in I band (800 nm). Only the observations in R band were
included in the modelling procedure because most observations available
in photometric catalogues are done in V or R band; therefore the introduc-
tion of the lightcurve in I band would unnecessarily lead to more systematic
errors (without providing new information because the observing geometries
are the same). The I band lightcurve is given here only to enable its use
for some future analysis, by other authors.

Photometrical measurements and noise procession were done in the FITS
Pro package. The magnitude of Juno was calculated by means of differential
photometry, HD204391 being the comparison star. Tables 1-2 contain the data
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on the observing geometry of Juno and on the comparison star. The ephe-
merides were calculated by the International Minor Planet Center Ephe-
meris Generator, and the position and the brightness of the comparison star
were taken from the Tycho-2 star catalogue. The average magnitude un-
certainty of the lightcurve points is 0.02; different points have different un-
certainties.

Table 1. Equatorial and ecliptic coordinates, phase angle, elongation, and
distances from the Sun and from the Earth of Juno, July 26th-28th 2000.

Dae  RA Dec AC) BC) aC) EC) AAU) r (AU)
(12hUT) (h) ©)

26.07. 2149 -026 3239 116 838 1563 1.679 2.642
27.07. 2148 027 3236 116 85 1573 1.672 2.639
28.07. 2146 -02.7 3234 116 8. 1584 1.665 2.637

Table 2. Equatorial coordinates and VRI magnitudes for the
comparison star HD 204391.

RA (h) Dec (°) \Y% R I
2147 —02.6 7.55 6.57 5.86

The composite lightcurves (hereafter lightcurves number 15; see the
next section) are given in Figures 1 and 2. The changes of the phase angle
were approximated with a linear trend. All the observations were reduced
to the observational geometry of the first day of observations. The lightcurve in
R band was fit simultaneously with the other lightcurves to a Fourier series
with four harmonics, thus simultaneously calculating the Fourier coefficients
and the period. The details of this procedure are given in the fourth section;
lightcurves 15 are given in this, separate section only for the convinience
of those who may want to only use the lightcurve from this paper for their
research.

The I band lightcurve 15 was fit separately, using the period calcu-
lated during the simultaneous fitting of the other lightcurves (using the ob-
vious fact that the period does not depend on the spectral band). Tables 3-4
contain the data on maxima and minima of the lightcurves. It must be stressed
that, as mentioned in the previous section, the uncertainties are not the same
for all points; therefore different points had different weights during the
fitting procedure, so the lightcurves may seem to not be the best fit, which
is because the fit is weighted.

The Fourrier coefficients for curve 15 in both bands are given in
Table 5.
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Table 3. Moments and relative magnitudes for extreme points of the
lightcurve 15 in R band. The errors are: 0.002 for moments of maxima
and minima, 0.03 for relative magnitudes.

Maximum 1 Minimum 1 Maximum 2 Minimum 2

Time 0.048 0.126 0.202 0275
Relative -0.09 0.12 -0.08 0.04
magnitude

Table 4. Moments and relative magnitudes of extreme points of the
lightcurve 15 in I band. The errors are: 0.002 for moments of maxima
and minima, 0.03 for their relative magnitudes.

Maximum 1 Minimum 1
Time 0.047 0.133
Relative magnitude -0.08 0.10

Table 5. Fourier coefficients of the lightcurve 15.

R band -0.0280 0.0127 0.0403 -0.0683 -0.0001 0.0052  0.0002
I band -0.0323 0.0028 0.0538 -0.0562  0.0031 -0.0104  0.0002

0.0001
0.0000

3. Lightcurves Used for Modelling

All the old lightcurves were taken from the Uppsala Photometric Cata-
logue of Asteroids. This catalogue contains magnitudes, observing geometries
and references for published lightcurves up to the year 1995. Those lightcur-
ves which did not cover at least one half of the period, as well as those which
had (or seemed to have) magnitude uncertainties larger than 0.03 were dis-
carded. The lightcurves that seemed to affect the period value too much and
those which substantially lowered the fit quality for other lightcurves were
also discarded. The lightcurves older than around 1980 had to be discarded
because their absolute rotational phases could not be calculated precisely
enough due to the period uncertainty (see the seventh section for a more
detailed explanation of why absolute phases are needed). Fourteen light-
curves have met the above criteria, in addition to the new lightcurve 15;
data on these lightcurves are given in Table 6.
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Most papers with lightcurves virtually do not contain any information
on errors, which, of course, makes any analysis of those lightcurves more
difficult and uncertain. For such lightcurves, uncertainties were estimated by
comparison with other papers that provided the uncertainty data and contained
observations of objects with similar brightness using similar instruments. These
estimations are, of course, only approximate and are not statistically well de-
fined; unfortunately, this was the only way to take into account the uncer-
tainties of those lightcurves.

Table 6. References and observational geometries for lightcurves used
in the modelling procedure.

No. Reference A B ®) a(®) A (AU) r (AU)

1 Schroll, 3
Schober, 106.6 16.7 14 2.235 144

Lagerkvist
1981.

2 Birch, 56.7 -17.1 194 1.147 2.004
Taylor 1989.

3 Birch, 252.8 185 6.6 2326 3.291
Taylor 1989.

4 Birch, 186.2 4.7 24 1.962 2953
Taylor 1989.

5 Birch, 183.6 53 24 1.978 2971
Taylor 1989.

6 Birch, 180.5 59 73 2.050 3.001
Taylor 1989.

7 Birch, 179.3 6.1 9.7 2.105 3.016
Taylor 1989.

8 Di Martino, 30.2 -16.5 8.0 1.051 2.024
Zappala, De
Sanctis,
Cocciatoni
1987.

9 Dotto et al.  157.7 8.2 10.6 1.571 2487
1995.

10  Hainaut- 2874 14.5 132 1.980 2.834
Rouelle,
Hainaut,
Detal 1995.

11 Harris et al. 110.0 -15.2 29.6 1.729 2.021
1989.

12 Harris et al. 117.7 179 26.6 1.482 2.057
1989..

13 Harris et al. 1190 —20.2 194 1.294 2.103
1989.

14 Harris et al 1079 -11.2 230 1.730 2323
1989.

15  This paper 3239 11.6 8.8 1.679 2.642
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Lightcurves 8, 10 and 11-15 also provide uncertainties; for the other
lightcurves, uncertainties were estimated as described. All the lightcurves
were in V band (although different authors define it slightly differently),
except lightcurve 15 which was observed in R band, as mentioned in the
previous section. This lightcurve was reduced to the V band (550 nm) us-
ing the V-R (5§50 nm and 660 nm, respectively) given in Schober, Schroll
1982. This enabled the investigation of the effects of using lightcurves from
different bands, which is often done in practice (although most authors do not
stress it explicitly) since the spectral range of the “V band” varies as much
as 60 nm among different authors (e.g. Schober, School 1982; Harris 1989;
Martinez, Klotz 1998). It will be shown that it is generally true that the
systematic errors induced in this way are overruled by the increase of pre-
cision and stability due to more data. Details about this will be presented
in the following sections.

4. Fourier Expansion of Lightcurves and Period
Determination

Fourier expansion of lightcurves is a well-studied topic; many numerical
techniques for this task have been developed thus far. The most suitable way
for the Fourier analysis of a large number of lightcurves, seems to be the one
based on the statistical inversion method, developed by Karttunen and Mui-
nonen (1990). Their procedure is slightly generalised here so that all the light-
curves could be fit simultaneously. The mathematical formalism of this method
can be found in the mentioned reference (Karttunen, Muinonen 1990); only
the intrinsic properties of this procedure will be presented here.

Each lightcurve was first interpolated so that all the lightcurves con-
tain the same number of points (that is why sparse or unequally distributed
lightcurves could not be used). The lightcurves were then expanded as a
complex-valued Fourier series (complex form is more suitable for the cal-
culations; the real-valued parameters are to be obtained later):

N
2nTL,
L,@) = z Cmnexan;t, m=1,..M

n=1

ey

where L, denotes the m-th lightcurve, c,,, is the n-th coefficient of that
lightcurve, while P denotes the value for the period (P, = 0.3004 d, from
the Uppsala Spin Vectors Catalogue of Asteroids was the first guess). Let
M denote the number of lightcurves, and L and / the number of points
per lightcurve and the 1-th point, respectively. In order to determine the op-
timal number of harmonics used, the whole fitting procedure was repeated
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with an increasing number of harmonics and the F-test (which gives the
probability that the new fit gives more information) was performed:

X=X ?)
V12 _ V2

F= 12

>

2

<

where )(2, )('2 denote the chi-square statistic and V, V' the number of de-
grees of freedom for the old and for the new fit, respectively. Following
Karttunen and Muinonen, the measured brightness’ are denoted by I, and
the desired real-valued Fourier coefficients by w (I and w now being ma-
trices instead of vectors, as a consequence of gathering all the lightcurves
together). Three-dimensional covariance matrix is denoted by S, and the
so-called Fisher information matrix (also three-dimensional) by Q.

Since the period is a non-linear parameter, and the Fourier coefficients

are linear parameters, there is no practical procedure for solving these parame-
ters without either linearisation of the model or performing small variations
of the period to find the best fit. The linearised model proposed by Karttunen
and Muinonen is not applicable when fitting many lightcurves simultaneously,
so the whole procedure was iteratively repeated by starting from the initial guess
and then solving it for parameters, again using a slightly increased and slightly
decreased period; the value which gives the better fit was then accepted, and
the whole procedure was repeated. The Fourier coefficients were determined
so that they maximise the a posteriori probability of the solution, assuming

Figure 3.
The curve of
R — I index from
01} 1 lightcurves 15. The
error of the index in
magnitudes is 0.06.
-0.05} |
Slika 3.
x Kriva R-I indeksa
g s 1 krivih 15. Greska
= indeksa u
o magnitudama je 0.06.
0.05} |
01t e
0.15 ‘ ' l ' '
0 0.05 0.1 0.15 0.2 0.25 0.3

Time (JD)

28 * PETNICKE SVESKE 53 DEO |



both the a priori distribution and the a posteriori distribution to be Gauss-
ian. The final equation for the real-valued parameters is:

w=(Q'f's'p’ 3)

where Q denotes the Fisher information matrix, and f is an LX2NXM matrix
given by:

_ 277 4)
fmin_COS[jP tadn = I, ..,N
O 0

- et O 5)
Join = sin G- fudn =N+ 1, .., 2N
U |

The described method allows one to obtain the Fourier expansion and
period of lightcurves, providing smoothness and stability of the solution.
It is important to notice that a self-consistent value of the period cannot
be determined if single lightcurves are fit because the period is intrinsi-
cally unique for all the lightcurves. The most dangerous part of the simul-
taneous fitting is the interpolation, which can, in principle, induce large
systematic errors; this can be avoided by using only sufficiently dense and
equally distributed lightcurves. These lightcurves tend to have a similar num-
ber of points, as can be seen from the Uppsala catalogue (and which was the
case for the lightcurves used in this paper), so the errors are reasonably small
and the overall precision is not much affected.

A Fourier analysis of longer periods was also performed to investi-
gate possible precession, since some asteroids are known to have a non-
principal state of rotation (e.g. Simonenko 1985; Harris 1987). However,
accurate analysis of these effects requires the time span between any two
lightcurves to be much smaller than it was in this case; the results should
only be considered as indications.

5. Qualitative Analysis of Lightcurves

Although it is not a widespread practice to pay much attention to qualita-
tive discussion of the lightcurves, it is obvious that some interesting conclusions
can be drawn, especially about topics such as albedo variegation that usually
cannot be determined in a quantitative way. Some conclusions of this kind have
proven to be helpful during the photomorphographic modelling procedure.

Coarse inspection of the lightcurves shows typical properties of a rotating
ellipsoid, with two maxima and two minima which are clearly visible. How-
ever, the secondary extremes greatly vary depending on the observational ge-
ometry, and sometimes even nearly vanish (e.g. lightcurve 4). The amplitude
and other properties also differ in different apparitions more than it is usual;
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e.g. lightcurves 8 and 9 have quite different properties. In principle, such
a strong dependence on the observational geometry encourages the state-
ment that the main reason for the light variations is the shape, and not the
albedo variegations. This conclusion is in clear disagreement with some
earlier researches (Schroll et al. 1982; Harris 1987). However, it must be
stressed that those researches were based only on a qualitative analysis,
without giving any quantitative models of Juno; the number of lightcurves
used was also significantly smaller. Therefore, the above statement is
probably more reliable (photomorphographic modelling has confirmed
these conclusions). However, the Fourier coefficients show a significant
first harmonic, in some lightcurves (5, 15) even more significant than the
second one. The first harmonic is generally thought (and it is quite obvi-
ous) to appear due to albedo variegations, rather than shape, although, to
be precise, it can also be induced by irregular, non-ellipsoidal shape, and
the above statement is true only if some a priori assumptions of the shape
are introduced; in general, there is no way to distinguish these effects
(Russell 1906; Kaasalainen et al. 1992). It will be shown (section 8) that
the first harmonics probably originate from a combination of both men-
tioned factors, which can be the reason for their intensity. The higher order
harmonics are mostly insignificant.

Another interesting possibility is to compare the lightcurve 15 in R
and I band. It has often been suggested (e.g. Lagerros 1996; Magnusson
1991; Magnusson et al. 1997) that phase difference between lightcurves in
different bands is an indication of the surface inhomogeneties. Variations
of the colour index curve also indicate such inhomogenities. However, it is
very important to understand that the following conclusions are very specula-
tive, based on only one lightcurve, and therefore should be treated with great
caution. For a more complete analysis, one should refer to the seventh and
eighth section.

The curve of R-I index is given in Figure 3. The mean value of the
index R — 1 is found to be: R — I = 0.5620.06

According to the Uppsala Photometric Catalogue, this is the first pub-
lished R-I index of Juno. The peak of the colour index can be seen ap-
proximately between the second minimum and the second maximum. It
should be understood that, as it is usualy the case, the error of the index
is quite large, so all the other deviations from the mean value in Figure 3
are within the error range and therefore cannot be discussed. On the men-
tioned peak, the brightness in I band drops significantly. According to the
standard thermal model of asteroids (Lebofsky, Spencer 1989; according
to: Lagerros 1996), such features indicate inhomogenities of thermal con-
ductivity in that area of the surface. Namely, in the less conductive area,
the surface absorbs a larger amount of thermal energy and thus emits ther-
mal radiation, so the overall flux is the sum of reflected and emitted en-
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ergy, and that area also radiates while in shadow. On the other hand, due
to the low thermal conductivity of the asteroid, the area which is currently
in shadow does not get energy at all (because practically no heat can be
conducted from the daylight side), so the emission from the night side is re-
duced (practically equal to zero). Some curves of colour indices have been
successfully explained in this way (e.g. Magnusson et al. 1996, Magnusson et
al. 1997). However, this is a more speculative conclusion, since the I band is
the limit between the visual and the infrared light. Although Lebofsky and
Spencer, as well as Lagerros (in papers about his new thermal model: Lager-
ros, 1996, 1997), state that these conclusions are true, at least theoretically,
also for the “very near infrared”, one should be careful with the above stated
consideration. Many more observations, in many more spectral bands, are nec-
essary to confirm it.

Most lightcurves show the difference between the primary and secondary
maximum. Although usually also referred to albedo variegations and similar
surface inhomogenities (Barucci et al. 1992; Dotto et al. 1995; Magnusson et
al. 1997; Schroll, Schober, Lagerkvist 1981; Schober, Schroll 1982), this is
largely a consequence of inferior modelling techniques, failing to describe the
shape properly, and thus requiring “Harlequin-patched” surfaces. Similar to
the discussion of the first harmonic coefficient, there is also no way to distin-
guish shape and albedo effects from the presented observations. The analysis
of the Laplace coefficients (seventh and eighth section) will help to draw
more certain conclusions about this.

6. The AAS Method

Modelling the shape and surface characteristics of an asteroid from
lightcurves is still an open problem. Some assumptions and approximations
are always needed. Classical methods use the ellipsoidal model, which is,
among such simple models, probably the most suitable one, especially for
large asteroids (e.g. Muinonen, Lagerros 1998; Simonenko 1985). Having
more sophisticated methods to use (Barucci, Fulchignoni 1988; according to:
Barucci et al. 1992; Ostro, Conelly 1984; according to: Kaasalainen et al.
1992), the reasons for applying classical methods fade. However, since they
do not require many lightcurves or extensive numerical calculations, they
are still quite useful. In this paper, the ellipsoidal model is used for a dif-
ferent purpose: to be used as the first guess for photomorphography. The
primary role of the classical model in this paper is to give the pole solution
which is to be used in photomorphography. Unlike the standard procedure
(Kaasalainen et al. 1992) which starts modelling from the sphere, the modelling
in this paper started from an ellipsoid, thus also using the ellipsoidal shape
solution, which has proven to yield a more stable and smooth solution with
finer details (see the eighth section).
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Classical methods can be classified into two well-known classes: the ep-
och method (E method) and the amplitude-magnitude method (AM method).
Both methods require some assumptions about the lightcurve properties (E
method) or the shape and scattering properties of asteroids (AM method).
In this paper the method named AAS method is used. It combines the am-
plitude-aspect relations (Pospieszalska-Surdej, Surdej 1985; Magnusson 1986) and
the extraction of spherical harmonics (Lumme et al. 1989). It is important to
state that the main purpose of this method was not to produce particularly fine
axial ratios, but rather to get the coordinates of the pole. However, it turns
out that the shape solution is also in reasonable agreement with the results
published thus far (see the eighth section). Therefore this method can also be
recommended if only the ellipsoidal solution is needed.

The basic idea of the AA part is the use of an aspect-amplitude re-
lation (Magnusson 1986), corrected so that it contains the amplitude de-
pendence from the phase angle in the analytical form, rather than using
the amplitudes reduced (to the zero phase angle) by means of linear cor-
rections. The mathematical formalism is based on the results of Pospieszal-
ska-Surdej and Surdej (1985).

In the AA (aspect-amplitude) part of this method, the asteroid is as-
sumed to be a triaxial ellipsoid with the semiaxes @ > b = ¢ and the pole
ecliptic coordinates Ao, 3o, the ¢ semiaxe being the rotation axis. Let O be
the aspect angle, A and [3 the ecliptic coordinates of the asteroid, O the
phase angle, and ) the rotation angle (the angle for which the asteroid has
rotated measured from the position in which the brightness is maximal).
The above notation also applies to the rest of the paper, unless explicitly
specified otherwise.

The formalism of Pospieszalska-Surdej and Surdej (1985) will be dis-
cussed here in a few words. Based on the well-known Lommel-Seeliger’s
law (Hapke-Irvine relation), it can directly be concluded that, for the op-
position or nearly-opposition observations, the amount of the light received is
proportional to the projection of the visible surface of the asteroid (“cross-
section”). When all the non-opposition effects (limb darkening, occultation
effect, etc.) are neglected, it can be shown that the projection of the ob-
served surface is:

.2 2 5
So (8, ) = abemt %inzﬁ %mzw + COSQLIJEI'F COS2'8 0 (6)
04 b o o U

For non-opposition geometry the most significant effect is the occul-

tation effect. The visible cross-section has to be corrected to take into ac-
count the nonilluminated part of the visible surface:

2
$(9.),0.9) = 5,6, W) - 5 76.0.0) "
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It is clear that equation (6) is a very good approximation for suffi-
ciently small phase angles, but for 0 > 17° the occultation effect cannot
be neglected. The analytical expression for the function £ (9, 0, ) is too
complicated for practical purposes in its most general form (dependence
on the aspect angle, obliquity and rotation angle are omitted for the sake
of conciseness):

sin? $cos? O N (sin w sin O + cos i cos O cos 8)2 N (cos w sin O —sin i cos O cos 9)2

2,2 2 2 2 2
ab a‘c b e
f =mabc

3
sin? 9 sin21//+coszt// +c05219 2
a’ b? c?

®)

However, if some reasonable assumptions are made, relatively simple

expression for the projection can be obtained. The obliquity can be neglected

for most mean-belt asteroids, at least at phase angles less than about 25° (e.g.

Tancredi, Gallardo 1990; Kwiatkowski 1995). After some elementary calcula-

tions, it can be shown that the values of the function (8) at the lightcurve
extrema are:

1 1 ©)]

foa®) = (abertf 15—

11 (10)

Fuin®) = (abert) 5 —— ©)

where S, . and S, in denote maximal and minimal value of the projec-

Tt
tion (6), reached for ) = 0 and P = 5 respectively. By supstituting (9-10)

into (7) and performing elementary calculations, the dependence of the ra-
tio of the extremal projections from the aspect angle and the phase angle
is obtained:

g | ool U )
5o (9.2) (bj g((j {4 ] Lt cos g[() 1} 7 (o)

(1D

If the scattering effects are neglected, the amplitude can be expressed again

from the expressions for the illuminated visible surface (dependence from the
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aspect angle and phase angle is not included for the same reason as in

@®)):

1+cos* 9 (

[SYNRN

o) (o

A=125log +25log

2 a 2
) —(j 1+cos® 9 (a
b c

(12)

As it can easily be seen, the above equation becomes the classical
Magnusson’s aspect-amplitude relation if the phase angle equals zero. Al-
though the above relation is a very simplified model of the actual ampli-

2

PR

o

tude dependence from the observing geometry and shape parameters, it can
be stated that the amplitude-phase angle dependence is taken into account quite
satisfyingly. Numerical experiments were carried out with a few dozen aster-
oids which had polar orientation and axial ratios among the best determined
thus far. These parameters were taken from the Uppsala Catalogue of Spin
Vectors of Asteroids. The accordance of the simulated amplitudes with the
observed ones (taken from the Uppsala Photometric Catalogue) is good in
most cases. No significant difference among different taxonomic types can
be noted, although the S type should, theoretically, show the largest incon-
sistencies with the equation (12) since its surface induces significant mul-
tiple scattering effects. This is probably due to relatively small phase angles;
as the phase angle increases, the accordance quickly vanishes.

The traditional procedure for interrelating the aspect-amplitude rela-
tion with the polar orientation is not convenient in this case, so the well-
known relation for the aspect angle was used as an additional equation:

cos & = —sin B sin B, — cos B cos B, cos (A —A,) (13)

Therefore, each lightcurve gives one pair of equations (12-13), and
the whole set is then solved in [3, A, a/b, alc space. For this particular
case, there were thirty equations with four unknowns. However, it is im-
portant to understand that equations (12-13) are separated only for calcu-
lational purposes, and that these thirty equations are in fact equivalent to
fifteen equations, one for each lightcurve, as it is usual for AA methods.
Since equation (13) should be treated as an identity (as it is the case in both
Pospieszalska-Surdej, Surdej 1985 and Magnusson 1986), the numerical pro-
cedure performed to find the solution should also treat it as a constraint which
has to be identically satisfied for any observational geometry. Some advanced
equation-solving algorithm should be used here (a somewhat modified sequen-
tial quadratic programming algorithm was used in this paper). The amplitudes
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we-re obtained from the Fourier coefficients calculated in the previous sec-
tion. This approach is more reliable and simpler than the use of differences be-
tween the minimal and maximal brightness. The obtained pole solution
was used as the starting guess for the S part of the whole procedure.

The spherical harmonics part of the method is not model dependent
and it does not use any shape parameters as a starting guess nor does it
give any shape parameters as a result. This feature makes it less vulnerable
to systematic errors than the classical procedures. This part is essential for a
precise determination of the pole, which is needed for the photomorphog-
raphy. The only practical limitation is that good a priori knowledge of the
pole position is required: the results of the AA part are used at this point.
The method is based on amplitudes and magnitudes, but includes a quite
different approach and mathematical formalism than the classical ampli-
tude-magnitude techniques. The method is described in Lumme, Karttunen,
Bowell 1989. Originally, it uses only the second order amplitude term in
the spherical harmonics expansion, which has to be reduced to the zero
phase angle. In order to avoid as many potential sources of systematic er-
rors as possible, in this paper a slightly different version which does not
require any reduction of amplitudes was applied.

The mathematical formalism of this procedure is based on Laplace
series (or spherical harmonics series) expansion. The expansion of the
brightness with respect to the aspect angle and the rotation angle can be
written in the following form (the usual normalising coefficients are omit-
ted, as they are not necessary here):

L 1

L(®,Y) = Z Z by, P (cosd) oMY

[=0k=0

(14)

where the Legendre polynomials are denoted as usual, and by, are the co-
efficients carrying the information on the lightcurves. The power spectrum
of the previous equation is more convenient for practical purposes:

H®) = z By PT (cosD)

[=m

(15)

Unlike the original procedure (Lumme ef al. 1989), two amplitude
terms were used (H1, H2); this should make the solutions more reliable,
particularly because, as it was mentioned in the previous section, some
lightcurves contain significant odd harmonics (in fact, first order harmon-
ics; the higher order harmonics are mostly negligible). Reduction of the
amplitude terms was avoided by introducing terms A',, characterising the
phase angle influence, thus making the above terms directly dependent on
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the phase angle; analytical expressions for this influence and their deriva-
tion are not important here and will be published elsewhere. Aspect angle
was substituted from the equation (13), thus making the above equations de-
pendent from the desired polar orientation.

Due to the large number of lightcurves available, an expansion to the
fourth order could be performed:

i (16)
H, = z hy h'y P} (cos9)
=1
4
H, = Z hyy hy' P} (cos9)
1=2

a7

If there are K lightcurves, 2K equations are obtained (one for each
aspect angle), containing altogether 2L+1 unknowns; so, using fifteen lightcur-
ves, there were thirty equations containing nine unknowns. For this set the
same statement as for the set (12-13) applies: it requires a good solving
algorithm, especially because the first order coefficients, although not neg-
ligible, are generally smaller than the second order coefficients; depend-
ence on the phase angle also induces some instability. It is now clear why
a good first guess for the pole was needed: only minor changes of the as-
pect are made during the solving procedure in this case, thus making the fit
“nearly linear”, since the most extensive calculations are done when solv-
ing for the expansion coefficients A;;;. The Levenberg-Marquardt minimi-
sation routine was used in this paper, and it has proved to be more convenient
than the programming methods for this case.

7. Photomorphographic Shape Analysis

Photomorphographic analysis is probably the best modelling technique cur-
rently available (see the ninth section for a more detailed discussion). It is rather
demanding because it requires a very good solution for the spin vector, and
the calculation of the shape parameters is a very tricky numerical proce-
dure which requires the use of regularisation methods and inversion. How-
ever, as it will be shown, the results are rather interesting and informative.

This method was developed by Kaasalainen and his collaborators
(Kaasalainen et al. 1992). In this paper a procedure similar to their original
method is used, except some minor changes and an entirely different nu-
merical method used for solving the shape. The basic idea of the photo-
morphographic method is to make the dependence of the lightcurves from
the shape properties more general; the shape parameters are therefore ob-
tained by inverting the integral brightness equation. No “global” assump-
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tions on the shape are needed, except the convexity; also, there is no pre-
defined shape, such as an ellipsoid.

The mathematical formalism of photomorphography will now be de-
scribed in a few words. Two coordinate systems will be used: the first being the
Earth-Sun based system, which parameterises each point on the surface with four
angles introduced earlier: aspect angle 3, obliquity O, phase angle O and abso-
lute rotation phase Y (note that  is not the rotation angle used in the pre-
vious section), while the second coordinate system is the intrinsic feature
of this method. This system parameterises a point with the direction (in
spherical polar coordinates 0, ¢ corresponding to “longitude” and “co-lati-
tude”, respectively) of an outward unit which is normal at that point. This
is the well-known “Gaussian mapping”. It can be easily shown that this
mapping describes a unique shape if and only if it is strictly convex (con-
vex without planar sections). This is the most severe limitation of this
method, although some concavities can be added subsequently, as it will
be shown later.

The integral brightness can be expressed as:

L(04; 9.004: P(Le.aQ) = [ P .£a.Q) G (6.9)sin ¢ dBdd (19)

where P(1,€,0,0) denotes the scattering law (Q being the vector of physi-

cal parameters in the scattering law), and G(6, §) is the Gaussian surface
density, one of the standard concepts of differential geometry; its meaning
is easily understood knowing that:

ds (6,¢) = G (6,¢v) sind (20)

Explicit knowledge of the surface density defines the shape, thus be-
ing the solution of the problem. Integration area S corresponds, of course,
to the visible and illuminated part of the surface; these conditions can be
easily parameterised using, for example, the angles |, € and the relations
that connect them with the Gaussian coordinates 0, .

Equation (19) is a Fredholm equation of the first kind, famous for its
ill-conditioned nature; the Gaussian mapping is the only one among the well-
known coordinate systems which allows the integration limits to remain con-
stant; unfortunately, this makes the inversion itself very tricky. Following
Kaasalainen (Kaasalainen, Lamberg, Lumme, Bowell 1992), the equation was
solved in the form of Laplace coefficients of a spherical harmonics expansion:

L I

GO.O =3 5 bt (0.9)

=1 m=-1

2n

ZBORNIK RADOVA 2001 ASTRONOMIJA « 37



by, being the unknown coefficients. On the other hand, the lightcurves are
known in the form of Fourier expansion (1). If the mentioned expansion
is rescaled and reshaped so that it gives brightness as a function of the
absolute rotational phase:

D=

(22)

LW) =S o exp(iny)
n=-N

2

it can be equalled with equation (21). Of course, the latter equation first

has to be transformed so that it becomes explicitly dependent only on the

absolute rotational phase. Since this transformation is completely identical

to that described in Kaasalainen et al.1992, there is no reason for repeating

their formalism here; it is enough to say that the final form of the equation
(21) is:

L l (23)
LW =Y > bin ki explimy)

1=0 m=-I

The coefficients denote all the transformation terms collected together.
By equalling (22) and (23) one obtains:

L (24)
Cm = z blm klm
[=dmd

A set of equations for by is thus obtained, depending on lightcurves (the
coefficients cm), observational geometries and scattering properties of the surface
(the latter two being characterised by kim coefficients). The above set of equa-
tions was solved with one of the inversion techniques (maximum entropy
method). Details of the calculations are given in section seven. There are several
reasons for the inconvinience of the above equations. First, it is clear that the re-
quest for all the Gaussian mapping coefficients to be non-negative and sufficiently
small if they are of a high degree (because the series has to be convergent) poses
non-standard constraints, which require advanced numerical techniques. Small
uncertainties may induce large deviations among the final solutions.

The scattering law is contained in kim coefficients. It is immediately
clear that it has to be of a suitable form so that none of these coefficients
vanish, in which case some data describing the shape would be lost. Since
the actual scattering properties of the surface are probably complex in com-
parison to any theoretical scattering law, there is no risk that such loss of
information actually happens in the lightcurves but it may happen in equa-
tions (24) because of the use if an inconvenient scattering law. Fortunately,
as it has been shown (Kaasalainen et al. 1992), with non-opposition ob-
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servational geometry, simple laws, such as the combination of Lambert law
and Lommel-Seeliger law, are applicable; the Lumme-Bowell law is also
convenient. Therefore, the Lumme-Bowell law was used to describe the
scattering since it is rather general and allows some coarse description of
physical properties of the surface; parameters for S type asteroids (Kart-
tunen, Bowell 1989) were used. The scattering parameters can be deduced
easily, since the equation (24) then becomes:

L
Cm = Z b/m Zi klmi (24)

I=0n0

where kj,; are the terms which contain parameters of the scattering law in
the form of a sum of expressions depending on the incidence and emit-
tence angles, phase angle and location. In practice, it has turned out to be
impossible to take into account dependence of albedo from the location if
the scattering coefficients are also taken as unknowns because the light-
curve number was not large enough. In order to investigate the albedo map,
a “blend” of Lambert and Minnaert law (the latter is given in e.g. Barucci
et al. 1992) was constructed:

P(1,€) = (cos €)M (cos1) 2V 7! (26)

where M, V denote non-dimensional coefficients, the former of order unity
and the latter somewhat smaller: these values have given the most realistic
synthetic lightcurves in numerical experiments (lightcurves can easily be
simulated using equation (19), since the Gaussian surface density, the scat-
tering law and the observational geometry are in that case explicitly kno-
wn). Although very simple and apparently without much physical sense,
this law was convenient for calculating albedo variegations because it in-
cludes only two parameters with best values that can easily be found by
performing small variations. The coefficients kj,,, in equations (24) can be
multiplied by the location dependent albedo function; however, the number
of lightcurves has again proven to be of crucial importance. For determi-
nation of the more sensible physical parameters of the surface, the Lum-
me-Bowell law was used again, in the form given in Karttunen 1989.

The second interesting point is the refinement of the spin vector so-
Iution. As it was pointed out by Kaasalainen and his collaborators, small
errors in the spin vector do not affect the solution very much, but the pe-
riod has to be known very accurately (because absolute rotational phases
are used). Simultaneous solution of all these parameters is difficult in prac-
tice because the equation (19) is linearly dependent on the shape but non-
linearly dependent on the spin vector. The simplest approach would be to
use small variations to obtain the best fit (similarly as in the fourth sec-
tion). This approach was also used in our calculations.
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Finally, there is the problem of calculating the surface points (precisely,
their radius vectors) from the Gaussian surface density. This task is not as
numerically complicated as the calculation of the Gaussian mapping itself be-
cause there are no problems with instability; as it was shown (Minkowski 1903)
the Gaussian mapping uniquely determines the surface, not only by means of
radius vectors, but also by means of the support function (outer product of an
outward surface normal and the corresponding radius vector). The support func-
tion is convinient for the radius vector determination, since the direct relations
between the surface density and the radius vectors lead to a complicated set
of coupled second-order non-linear partial differential equations. The support
function was calculated using the concept of the so-called mixed volume,
introduced by Minkowski (Minkowski 1903) and proposed in the mentioned
Kaasalainen’s paper (Kaasalainen et al. 1992). This concept is well-known
(e.g. Nurenberg 1953, according to: Kaasalainen ef al. 1992; Mecke 2000) so
there is no need to describe it here in great detail. The minimisation algo-
rithm used to solve the support function is the iterative technique mentioned
in Mecke 2000. Knowing this function, elementary use of differential geome-
try gives the radius vectors.

8. Results and conclusions

This paper is somewhat illustrative in nature: models of single asteroids
are not of significant importance, but if suitable modelling techniques are de-
veloped soon, this can help to build a large database of models which can be
of use for studies of common properties within the same taxonomic type or
within the same orbital family, interrelating shapes with the orbital and colli-
sional evolution, etc. The following results should therefore show the vastness
of data that can potentially be obtained from lightcurves.

Fourier analysis described in the fourth section allowed all the light-
curves to be parameterised by means of Fourier coefficients, which are not
only more reliable, but also easier to use than discrete points. The best
value for the period of Juno (in days) was calculated:

P = (0.30040+0.00001) d 27)

The main properties of the lightcurve coefficients are described in the
fifth section, more as an illustration of a purely qualitative reasoning (which
was common in modelling of asteroids until relatively recently) which can
be compared with exact results obtained later, than for any real information,
although some preliminary conclusions proved to be helpful while choosing
the photomorphographical procedure. Therefore, there is no reason to re-
peat those conclusions here. It is more interesting to discuss the long-period
variations. Although very tentative and speculative, the obtained results do show
some quasi-periodical variations of the order of a few days. Spectral power
of these variations is barely significant, but it still seems probable that they
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are not an effect of noise. Of course, no statements such as the precession
of Juno can be made; the noted variations should be treated as small irregu-
larities which can only be prescribed to the existence of forced precession in
the distant past (compare similar results and discussion in Krugly et al.
1994; Bronsteyn 1982). Little can be concluded from this; it is only obvi-
ous that traces of collisional and/or tidal evolution stay detectable long af-
ter the direct effects disappear; however, it must be noted again that this
result is suspicious.

The AAS method allows calculation of rather stable solutions for the ax-
ial ratios and pole orientation. Different combinations of lightcurves were in-
vestigated: up to seven lightcurves were discarded, increasing the requests for
the percentage covered, goodness of fit, etc. Those lightcurves which were spec-
trally different from Johnson’s V standard (the R band lightcurve (lightcurve 15),
and some other lightcurves for which it was found in the corresponding pa-
pers that the used filters were not standard) were also excluded from some
test calculations. Finally, it was obvious that the quality of the solution be-
comes better if more lightcurves are added; the given solutions are thus the
solutions found when all the lightcurves are taken into account. Details on
these questions can be found in the next section.

During the AA step, two solutions were obtained, where the second
one obviously gives an unrealistic, extremely flattened shape:

Aol = 1057487 Aoz = 302°48°

Bot = 39°11° Boz = 57°%11°

% = 1244006 %H = 1564006 (28)
2

= 1430.10 %H = 1.900.10
(2

The errors given are maximal deviations, not the formal errors, since
the latter have unrealistically small values (similar difficulties are often in
this kind of problem, e.g. Kwiatkowski 1995; Magnusson ez al. 1997; see also
a more general discussion in Press, Teukolsky, Vetterling, Flannery 1997). The
second solution was discarded for both formal and physical reasons: its conver-
gence is very slow, formal errors are an order of magnitude smaller than for
the first solution (this being an evidence of the unphysical nature of the solu-
tion), the shape is too flattened for a large asteroid such as Juno. Most im-
portantly, the spherical harmonics part clearly showed the unacceptability of
this solution; even the spherical harmonics expansion becomes nearly impos-
sible with these starting values. The final result of the AAS method is:

Ao = 104°%6°
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Figure 4.

Model of Juno “seen”
perpendicularly to the
ab plane — view
“from the top”

Slika 4.

Model Juna “viden”
normalno na ravan ab
— pogled “odozgo”

Figure 5.

Model of Juno “seen”
perpendicularly to the
ab plane — view
“from the bottom”

Slika 5.

Model Juna “viden”
normalno na ravan ab
— pogled “odozdo”

Figure 6.

Model of Juno “seen”
perpendicularly to the
ac plane — view
“from the right”

Slika 6.

Model Juna “viden”
normalno na ravan ac
— pogled “sa desne
strane”
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Figure 7.

Model of Juno “seen”
perpendicularly to the
ac plane — view
“from the left”

Slika 7.

Model Juna “viden”
normalno na ravan ac
- pogled “sa leve
strane”

Figure 8.

Model of Juno “seen”
perpendicularly to the
bc plane — view
“from the right side
of the previous
figures”

Slika 8.

Model Juna "viden"
normalno na ravan bc
— pogled “sa desne
strane prethodnih
slika”

Figure 9.

Model of Juno “seen”
perpendicularly to the
bc plane — view
“from the left side of
the previous figures”

Slika 9.

Model Juna “viden”
normalno na ravan bc
— pogled “sa leve
strane prethodnih
slika”
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Bor = 37°%7° (29)

The photomorphographical analysis is, of course, the source of most
complete and most indicative information in this paper. Many slightly differ-
ent approaches were tried in order to investigate different properties. The nu-
mber of lightcurves used was also varied; the results are qualitatively similar
to those of the AAS method (best results with the largest number of light-
curves), but propagation of systematic errors is now even more difficult to
trace. Polar orientation and period were refined during the modelling, as the
maximum entropy method allows simultaneous calculation of linear and non-
linear parameters. The new values, being the final spin vector solution, are:

Ao = 104°#6°
o1 = 37°%7°
P = (0.30040%0.00001) d (30)

This is very near to the solution (29); formally, one cannot state that
(30) is any better, but bearing in mind the properties of the maximum en-
tropy method, solution (30) was accepted as the best one.

The shape was obtained using both the shape-only equations (24) and
the combined shape-albedo equations (25), the latter one with the Lumme-
Bowell law and with the law given in (26). Apparently, such an approach
is very coarse since it does not allow explicit determination of relative sha-
pe and albedo contributions. However, this is common in photomorphography
(e.g. Barucci et al. 1992). The set of equations (24) gives the shape-only solu-
tion, which is also the smoothest and the most rapidly convergent one; therefore,
it was accepted as the most probable solution and it is given in Figures 4-9,
from six different views (see captions for the corresponding pictures). The li-
ght source is arbitrarily positioned and it does not represent any particular ob-
servational geometry. The shape contains some concavities, to represent the
true shape as well as possible.

The albedo map, obtained from the equations (25) using the scattering
law (27), tends to be unstable in the numerical sense and suspicious in the
physical sense. The scattering law was constructed to be convenient for
separating shape and albedo parts of the Laplace coefficients. Although it
does have some physical meaning in very much the same sense as the Mi-
nnaert law, corrected for the effects of the angle of incidence so that the
surface need not be assumed to be smooth, it remains only a rough ap-

proximation. The best values for U,V were calculated to be 0.68 and 0.53;

the value for [ is in good agreement with the accepted values for S type
asteroids in Minnaert law (0.55-0.70 as stated by French, Veverka 1983;

according to: Barucci et al. 1992), while V, practically, confirms the con-
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venience of the Minnaert law, since the dependence upon the incidence
angle is rather insignificant. Of course, the determination of these parame-
ters is also tentative since they are coupled with surface inhomogenities.
They are, however, not very significant: the maximal deviation from the
mean albedo is about 20%, while two thirds of the surface have variega-
tions not larger than 8%, being probably within the error range.

The global shape, in the case of the albedo-shape model, is similar
to the shape-only solution in Figures 4-9, so the main results of albedo
mapping may be described using these figures. There are two apparent,
significant patches on the surface: one on the mountainous structure, vis-
ible near the centre in Figure 4, and one in the lower central region in
Figure 6. The second one is in a slightly concave region, best visible in
the left centre of Figure 5. Both are darker than the rest of the asteroid.

Finally, modelling was performed using Lumme-Bowell again, only
this time to calculate the scattering parameters. This task is numerically
difficult, since the number and quality of lightcurves is not sufficient to
allow unambiguous determination. To simplify the approach as much as pos-

sible, only three free parameters were used: single scattering albedo (J,, asym-

metry factor g and surface roughness P; as usual, the surface was assumed to
be saturated with holes, giving g = 1. The second parameter assumed to be con-
stant is the volume density, for S asteroids about D = 0.37 (Karttunen, Bow-
ell 1989). This parameter appears only in the single scattering function, so it
would be practically impossible to determine it; on the other hand, most
results obtained thus far (e.g. Magnusson et al. 1997; Rowe 1993) show
that this parameter does not change much among different asteroids, espe-
cially among asteroids of the same taxonomic type. The calculated values
of the parameters are:

w, = 0.57
g=-0.10 31
p=1.19

Unfortunately, there is no way to calculate the errors; uncertainties are pro-
bably of the order 0.03, but systematic errors are probably much more significant.
The standard values for S type asteroids are W, =0.54, g =—0.07, p=1.19,
thus being similar to the calculated values. However, it is interesting that all the
calculated values are “more nongeometric” than the standard ones; albedo is
larger, asymmetry is more significant, as well as the roughness, all three
contributing to nongeometric scattering, more distinct dependence of mag-
nitude and amplitude upon the phase angle, etc. It is also possible that this
is a systematic effect due to the approximations or some unknown depend-
ence upon some features in the lightcurves. The shape itself is even more
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similar to the shape-only model than in the previous case (probably be-
cause of the same scattering law used) but stability of the solution is so-
mewhat reduced.

Errors of the shape itself are also very difficult to determine; this is an
important problem with photomorphography, still unsolved. For the shape-
only solution, deviations of the calculated lightcurves from the observed
ones are about 2%:; for the other two models, these deviations also con-
tain the errors of albedo map/scattering coefficients

Based on the above stated, some general conclusions about the physi-
cal properties of Juno can be drawn. Firstly, its pole solution is well de-
termined; results presented are in good agreement with those previously
published (results of other authors are cited from Uppsala Spin Vectors
Catalogue of Asteroids). The longitude of the pole ranges between 101°
and 110°, while the latitude is between 29° and 40°. The pole solution gi-
ven in this paper is probably the most reliable one, since it includes most
lightcurves and uses the most general method — spherical harmonics ex-
pansion. Some authors also report a second solution that is relatively near
to the second ellipsoidal solution in this paper, which is, however, as men-
tioned, erroneous since it cannot fit the spherical harmonics expansion. The
a/b ratio is within the interval 1.18-1.23; the ellipsoidal model in this paper
gives a slightly larger ratio — 1.24, due to reasons discussed in the follow-
ing section. The other shape parameter is reported by other authors as b/c
ratio; the result from this paper corresponds to the value 1.15. There are
only two reliable solutions for this value so far: 1.02 and 1.26. Therefore,
it can be stated that this ratio is not yet well determined; however, for rea-
sons described in the next section, the value published here might be close
to the truth, especially because it agrees quite well with the photomorpho-
graphical model. As a large S type asteroid, Juno is expected to be nearly
spherical and to have a relatively smooth surface. The ellipsoidal solution
and, especially, the photomorphographical model, show, however, a some-
what more flattened and irregular shape; some purely local structures, e.g.
slight concavities, mountainous structures, etc. are clearly visible in Fig-
ures 4-9, although the smallest irregularities are probably the side effects
of Laplace series truncation, random errors, etc, rather than real structures.
This, together with the possibility of a precession existing some time ago,
indicates tempestuous collisional evolution. In light of this assumption, so-
me of the concavities present in the model, especially those with possible
albedo patches, can be interpreted as craters. Of course, this is only a pos-
sibility. Whereas, also according to results of recent NEAR landing on Eros,
it seems that asteroids, including large ones, are more irregular and colli-
sionally evolved than it is usually assumed. The albedo variegations prob-
ably do contribute to the overall lightcurve shape. Although details are
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very uncertain, it seems that they have some connection with the supposed
collisional evolution (e.g. darker surface on the most significant concave
feature). It is interesting that the shape is nearly invariant to the existence
of albedo variegations; if we assume that this is not a consequence of er-
roneous calculations (which might be the case), this indicates that the ca-
use of non-shape lightcurve properties might be some unknown properties
of the phase curve. The Lumme-Bowell law parameters seem to contribute
to the lightcurve shape more than expected; it also seems that the obtained
values of these coefficients are more certain than the albedo map. The cla-
ssic H-G parameterisation of Juno’s phase curve was not carried out in
this paper since reduced amplitudes and/or magnitudes where not used; an-
other reason is that the H-G system is very sensitive to minor spectral dif-
ferences in observational data (Lagerkvist, Magnusson 1990).

It would be interesting to carry out a detailed observational campaign
to confirm the existence of precession; also, better coverage of both very
small (< 5°) and very large (> 30°) phase angles could reveal interesting
details; if the hypothesis of a relatively bright, rough, non-geometrically
scattering surface is true, the opposition effect, which is still poorly obser-
vationally covered for Juno, should be particularly strong. Nevertheless, new
observations will reveal more details. More clever numerical techniques may
also allow more certain calculations of some surface characteristics.

9. Discussion

Many different methods and numerical procedures are used in this pa-
per, some of them well-known and well-investigated, while some are newly
introduced here, or still rarely used or poorly known. Also, many assumptions
and standard simplifications are done in the asteroid modelling, which have
to be analysed in order to make the modelling more efficient and the results
more certain.

Quality of observational data is, generally speaking, very problem-
atic, which probably causes many of the inconsistencies among different
authors, even when very similar methods are used. Generally accepted co-
nventions about the publishing and parameterising of data do not exist. As
it was already mentioned, many authors do not even publish errors of their
observations. It seems that reliability of the results severely drops because
of such problems, although more as a result of the different ways in which
different authors deal with them than because of the low-quality of the da-
ta itself, if the lightcurves are carefully chosen. For test purposes, the mod-
els of Zappala and KneZevi¢ (Zappala, KneZevi¢ 1984, according to:
Birch, Taylor 1989) and the models of Birch and Taylor (1989) were cal-
culated using the lightcurves and the methods originally used by them, but
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with a more rigorous scheme for taking into account the influence of in-
strumental errors and different spectral bands on the final error; this re-
sulted in very similar final results and, it seems, more consistent values of
errors. The influence of slightly different spectral bands was checked for
each method separately, but the overall conclusion is that one should use
as many lightcurves as possible, except in extreme cases when the results
are substantially affected by the lightcurve inconsistencies. Of course, the
need for standardisation of photometrical systems remains one of the most
important observational issues.

The Fourier parameterisation and period determination of the light-
curves was carried out by means of one of the theoretically best devel-
oped, but in practice still rarely applied method. It is clear that this method
is rather demanding in the sense of quality of data; good a priori knowl-
edge of the period is also needed, especially if the period is obtained by
small variations. If single lightcurves are fit, as in the original paper (Kart-
tunen, Lumme, Bowell 1990), the calculations have to be linearised so that
the period is directly calculated. On the other hand, Fourier coefficients
are very self-consistent, even if no good guesses of the amplitude or some
other lightcurve features are available. Simultaneous fit of all the lightcur-
ves has proved to be much more convenient and stable than individual fit of
each lightcurve, although the reasons for this are not quite clear. It seems that ma-
ny single fits affect the overall consistency, especially for those curves which differ
significantly from most of the others; also, as mentioned, the period cannot be
determined in this case, since its determination must include all the lightcur-
ves. The largest problem here is interpolation, which can induce errors itself.
Despite some earlier conclusions (e.g. Lumme, Karttunen, Bowell 1989), it is
obvious that the good sides of interpolation justify its use; interpolated light-
curves also allow some manipulations (e.g. FFT) which are not possible oth-
erwise.

The aspect-amplitude part of the AAS method needs especially exten-
sive investigations and tests, since it is used here for the first time. The
aspect-amplitude relation itself is a very coarse approximation, but it is theo-
retically justified, unlike the empirical correction of the amplitude in traditi-
onal relation (Magnusson 1986). Its usefulness probably greatly depends
on the surface characteristics of a particular asteroid. Detailed tests of this
procedure are beyond the scope of this paper, but some interesting points
can be discussed. As mentioned in the sixth section, the amplitude-aspect
relation was tested for the best-observed asteroids and the agreement is su-
rprisingly well. This might be because the occultation effect remains the
most important factor in the range of phase angles usually covered by ob-
servations. It might be worth noticing that the disagreement between the
numerically simulated lightcurves and the predicted amplitudes was con-
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siderably larger, especially for large phase angles and for S type scattering
parameters. A good explanation for this still cannot be given. One possi-
bility is that the free path of light inside the surface layer of these asteroids
is usually larger than the average surface roughness scale, so a portion of
light losses information about its original direction and practically does not
show any dependence upon the incidence angle. This is only a hypothesis
and further work is needed to confirm it.

The ellipsoidal model shows satisfyingly good agreement with pre-
vious data, except for the shortest semiaxe. However, as it was noted, many
authors experienced difficulties with its determination; for example, Erikson
and Magnusson (Erikson, Magnusson 1993; according to: Uppsala Catalogue
of Spin Vectors of Asteroids) have calculated two drastically different solu-
tions, one of them being unphysical. Others have assumed Juno to be a biaxial
ellipsoid. These facts indicate that empirical relationships may overlook some
important, probably mostly geometrical effects. On the other hand, a some-
what larger a/b ratio in this paper does show that the scattering effects are
underestimated.

The spherical harmonics expansion, gives better results if the phase
angle dependence is taken into account. Of course, this requires a better
numerical technique, because more unknown coefficients are introduced but
the results are as general as possible, free of any dependence from the shape.
This makes the spin vector, together with its refined value during the photomor-
phography, the most certain and solid result of this paper. Overall, the AAS me-
thod has proven to be a good technique. Although techniques which include direct
dependence of the lightcurve upon the surface, shape and observational geometry
(e.g. Kwiatkowski 1995) are surely more reliable, and can be easily put toge-
ther with a spherical harmonics method, they are mostly not necessary for
the Main Belt Asteroids, because the observational geometry does not cha-
nge so fast as in the case of Near Earth Asteroids. Also, the use of epochs
should improve the results, but it is very difficult because good epochs are
not available for most observations (this paper does not use epochs be-
cause very few good ones could be found).

The photomorphographic method is, probably, the most perspective tech-
nique in this field. This is the only method, which, in theory, gives the best
convex shape (in the least-squares sense). No firm preliminary assumptions
have to be made, but an a priori guess is very important. Experiments have
shown that a sphere always gives worse solutions than somewhat elonga-
ted models, even if their axial ratios significantly differ from the shape of
the synthetic object. Laplace coefficients of higher order have to be brack-
eted inside a narrow interval, but the need for this largely fades if a good first
approximation is known. Bodies with craters have been simulated with the
similar formalism as in the equation (19), using also some results of Kart-

ZBORNIK RADOVA 2001 ASTRONOMIJA « 49



tunen 1989. A global, convex shape is obtained without difficulties. Larger
craters have substantially negative values of the Gaussian surface density,
but this can be successfully included in the model, as it was done in this
case. Of course, intrinsically non-convex bodies cannot be represented.

Albedo variegations and scattering parameters of the surface can, in prin-
ciple, be obtained by means of ordinary procedures if there are enough dif-
ferent observational geometries. For this purpose, a few well-distributed
lightcurves have proven better than large numbers of lightcurves that cover
small intervals of the phase angle. The “combined law” used in this paper
gives a coarse description of the albedo distribution; most significant inhomo-
genities are well modelled, while the others are drowned by noise. It can be
said that the conclusion of the albedo variegations of Juno in the previous sec-
tion is justified (only two regions with lower albedo, the rest is noise). The
Lumme-Bowell law with fixed parameters is best for reproducing synthetic
curves, while the parameter determination is somewhat problematic: many
lightcurves (at least about 15) are needed and extremely irregular shapes pro-
duce larger values than the true ones. Although exactly 15 lightcurves were
used for Juno and the shape is probably not very irregular, it should be clear
that a systematic error for the parameters obtained does exist.

Local concavities can be restored during the calculation of the support
function using ideas very similar to those mentioned in the fourth section
and used for the Fourier analysis and based on statistical inversion. The
intrinsic idea is that in those regions of the surface in which the support
function does not give meaningful results, the Gaussian surface density is
inverted so that those values which give the best shape and which are satis-
fyingly near to the starting values are found. This is a mathematically suspi-
cious idea, since the solution is somewhat subjective, but numerical
experiments have shown that the shape can be reconstructed satisfyingly with
relativley few erroneous structures, induced by subjectivity. Of course, this ap-
proach also requires further developments.

Good numerical techniques are very important in this paper. It can-
not be stated that the maximum entropy method really is the best choice,
but it does have some good characteristics: smoothness, stability, intrinsic
non-negative values of the results and non-linearity, which allows the si-
multaneous determination of the spin vector together with the shape. Of
course, the method used here is only formally similar to the traditional ma-
Ximum entropy image restoration techniques, since it includes a priori knowl-
edge (instead of assuming that the solution space is ergodic) and the solution
does not represent pixels but coefficients. More advanced numerical tech-
niques will certainly extend the possibilities of this method, which is cur-
rently mostly limited with bad quality and quantity of the observations.
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Mihailo Cubrovié

FiziCke karakteristike 1 fotogrametrijska analiza oblika
asteroida 3 Juno

Dat je model asteroida 3 Juno uraden na osnovu krivih sjaja u vidljivoj
svetlosti. Metod modeliranja bazira se pre svega na fotomorfografskom metodu
(Kaasalainen er al. 1992). Za modeliranje je koriS¢eno petnaest krivih sjaja,
od kojih je jedna snimljena u ISP i ovde prvi put objavljena, dok su ostale
preuzete iz Uppsala fotometrijskog kataloga asteroida.

Sve krive su obradene Furijeovom analizom, ¢ime je dobijena vred -
nost perioda. U prvoj aproksimaciji asteroid je posmatran kao troosni elip -
soid &iji su parametri odnosi poluosa a/b i alc, a koordinate pola 3, i A,.
Ovi parametri su odredeni kombinacijom modifikovanih relacija amplitu -
da-nagibni ugao i metoda sfernih harmonika (Karttunen et al. 1989). Tako
dobijeni parametri su iskori§¢eni kao pocetna vrednost pri modeliranju fo -
tomorfografskim metodom. Oblik se kod ovog metoda opisuje standardnim
formalizmom diferencijalne geometrije, i dobija se kao Gausova povrSinska
gustina u funkciji koordinata. Modeliranje je izvreno sa nekoliko zakona od -
bijanja (Lomel-Zeligerov, Lume-Bauelov i njihove kombinacije). Kao nu-
mericki metod za inverziju Fredholmove integralne jednaCine prve vrste
koja sadrZi Gausovu povrsinsku gustinu kao nepoznatu funkciju, iskoriS¢ en
je modifikovani metod maksimizacije entropije. Ovaj metod je, za razliku od
standardne tehnike statisticke inverzije, omogucio ispitivanje lokalnih nekon -
veksnosti i nehomogenosti povriine, kao i vecu stabilnost reSenja.

Dobijeni vektor rotacije Juna je [3,=3616°, A,=104%4°, P =(0.300396+

+0.000002) d. Model je prikazan na slikama 4-9, u Sest normalnih projek -
cija. Modeli dobijeni sa razli¢itim zakonima odbijanja se razlikuju samo
po malim lokalnim strukturama, koje su najveé¢im delom u granicama gres -
ke. Najveca struktura, vidljiva pri dnu slika 6 i 7, je konkavna oblast sa
neSto niZim albedom od ostatka povrSine koja mozda predstavlja udarni
krater. Ostale varijacije albeda su verovatno u granicama greske, pa se ne
mogu razmatrati.

Dobijeni rezultat je ohrabrujuci i ukazuje na potencijalno veliku koli -
¢inu informacija koja se moZe rekonstruisati fotomorfografijom. Najvaznija
ograniCenja su koli¢ina i kvalitet posmatranja i numericke tehnike. Moze

modeliranja na osnovu krivih sjaja mogu ocekivati korisne informacije o

se pretpostaviti da ¢e se po oba pitanja u buducnosti napredovati, pa se od @
fizickim osobinama asteroida.
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